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DENSITY-GRADIENT THEORY OF ELECTRON
TRANSPORT IN SEMICONDUCTORS

1. Introduction.

For a detailed understanding of the physics and engineering of semiconductor devices a

macroscopic or continuum description involving the diffusion-drift current equations is

often used. This description, while having a wide range of applicability, has become

increasingly limited in its usefulness as the temporal and spatial scales of state-of-the-art

devices have continued to be reduced. The inadequacy of the diffusion-drift description in

the new regimes is commonly (although usually implicitly) ascribed to a failure of

continuum approximations 2 and, consequently, microscopic approaches, e.g., Boltzmann or

Liouville equations, are widely pursued.' 4 In fact, however, continuum approximations

often continue to be met in these regimes and it is rather the specific physical

(constitutive) assumptions made by the standard diffusion-drift description which are

violated. In Ref. 5 and in this report a continuum description which rectifies one of the

primary failures of the standard diffusion-drift theory - its inability to account for

quantum effects - is developed. The key to this description is a generalization of the

equation of state of the electron gas allowing the internal energy of the gas to depend not

only on the gas density but also on the density gradient.

Because we are interested in applying a continuum description on smaller spatial scales

than are normally addressed by the usual diffusion-drift description, the question of

continuum assumptions is an important one. Moreover, a simple example suggests that in

fact such assumptions are frequently not met. In an inversion layer in silicon (a situation

in whi h quantum confinement effects are manifested) a typical electron density is

1XI -Jbcm- 3 and one would expect a continuum theory would be applicable only over

space dimensions large compared to 10nm [(111cm-3)-l/3]. Since the inversion layer

itself is on the order of 10nm thick, it follows that a continuum theory cannot be used to

Manuscript approved February 2. 1989.
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describe the density profile across the inversion layer. Similar arguments suggest that

other important device situations involving quantum effects, e.g., tunneling devices or

quantum wells, have this same difficulty with continuum assumptions as well. In all such

cascs, of course, the implication is that microscopic theory must be used instead.

It thus appears that a continuum description of electron transport in semiconductors

which contains quantum effects is an impossibility because the spatial scales over which

interesting quantum phenomena act seem to be non-macroscopic. Fortunately, it turns

out that there are many situations where it is possible to weaken the continuum

assumptions and thereby to mitigate this judgement. One way of doing this involves

"planar-averaging" and is possible because often in applications, e.g., the inversion layer,

we require high resolution in the theory in one dimension only. By restricting the class of

volumes over which continuum averages are taken to be flat, "pancake--like" regions rather

than regions of arbitrary shape, we can effectively decrease the average "spacing" between

electrons in the direction normal to the large faces of the "pancake." In this way, we

enhance our ability to describe rapid variations in this normal direction at the expense of a

decrease in the in-plane resolution. A second way of weakening continuum assumptions is

to trade off temporal resolution for increased spatial resolution (in all directions), thus

describing phenomena in time-average only.6

Given that a continuum description of the electron density (in a planar-averaged or

time-averaged sense or as in Ref. 6) is possible on the small spatial scales of interest, how

is such a theory developed? As alluded to above, both direct macroscopic developments

and microscopic derivations are possible. The former approach is that of classical field

theory 7 and the speci:-ac methods for developing higher-order theories such as the

density-gradient description of this report are due to Toupin8 and to Green and Rivlin.

In brief, this approach involves postulating a simple model, determining the constraints
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imposed by general balance laws and thermodynamic principles and then, within these

constraints, selecting the particular material behavior by a choice of constitutive equations

(in our work, simple linear response functions). For the latter, alternative approach of a

microscopic derivation the starting point is classical or quantum statistical mechanics and

the macroscopic equations are obtained using averaging and truncation procedures. This

approach has been used previously to derive density-gradient type theories in both a

classical framework using the Chapman-Enskog expansion 10 and for the quantum case

using the Wigner function.1 1 To some extent the macroscopic and microscopic app'oaches

are complementary in that the former has advantages of simplicity and generality while the

latter can provide additional physical insight and give explicit formulae for material

coefficients appearing in the continuum equations (in terms of "fundamental" constants).

As noted earlier, in this report we employ the macroscopic approach.

As in Ref. 5, two methods of implementing the macroscopic approach are pursued.

The first is a variational development which follows the work of Toupin 8 and whose prime

advantage is its simple, known starting point. Its main disadvantage is that it applies only

to non-dissipative situations and thus only to semiconductors in (static) equilibrium. The

second method of obtaining the macroscopic equations is a balance law approach due to

Green and Rivlin 9 and it is capable of handling dissipative situations. Additional details

concerning these two approaches and a thorough discussion of their relative merits has been

given by Tiersten and Bleustein. 2

Finally, in this report we extend the balance law derivation given in Ref. 5 to

incorporate the effects of macroscopic inertia. This extension is needed because electron

gas inertia, usually negligible in semiconductor transport problems, is freque-itly significant

in situations where quantum effects are -nportant. Because it turns out t,,at no chemical

potential formulation of the theory (as given in Ref. 5) is possible, at least in principle,
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when inertia is non-negligible, in this report, we give the complete theory (including

boundary conditions) in the more fundamental and widely applicable form involving the

electron gas pressure. However, because of the usefulness of a chemical potential

formulation, we also present the equations in this form with the effects of inertia

approximated so as to be valid under most circumstances.

The density-gradient theory of electron transport in a semiconductor as developed

herein can be expected (and, to some extent, has been shown13- 15) to be of considerable

use in modeling semiconductor devices in which quantum effects are important. The

primary reason for this is that the continuum description is much simpler than the existing

214alternatives which are fully microscopic.' By including quantum effects to lowest order

only, the macroscopic description is simple enough that other important parts of real

device modeling problems such as scattering, electrostatics and boundary effects can be

analyzed without great increases in computational expense.

2. Variational Development of Density-Gradient Theory in the Static Case

When no dissipation is present, as in a semiconductor in (static) equilibrium, one can

obtain the governing equations of macroscopic systems from a variational principle

(Lagrangian). For the situation of interest in this report, the variational approach has

several advantages. Most importantly, the known functional form of the internal energy

density of the electron gas, i.e., with a density-gradient dependence, is a direct input to

the analysis. The starting point in the alternative balance law approach (Sec. 3) is much

less clear and, in fact, can best be det.!rmined from the variational principle. An additional

advantage of the variational approach is that, because wc discuss a fluid, one of the

boundary conditions is much more evident.
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For the variational principle, we assume the existence of an electron gas with charge

density pe and an internal energy per unit charge of e. Following Toupin we then

postulate the variational principle

(2.1) 6,Pe~edV = tF6y dV + JF~by-dS + {FOD(L6yj)dS + Fj6Yr-ds
SS C

where S denotes an arbitrary surface enclosing a fixed volume V and C consists of edges in

the surface S, i.e., lines of intersection of smooth portions of S. In (2.1) and throughout

this report we employ Cartesian coordinates in indicial notation with repeated indices

being summed (Einstein summation convention). The yj are the present (or Eulerian)

coordinates of the electron gas, 8 indicates variation holding the reference (or Lagrangian)

coordinates 7 XK of the gas fixed and D signifies the normal derivative. The quantities F,

F2 F3 and F4. are generalized forces representing all "external" interactions. The preciseJ' J J
physical origin of these forces is immaterial for the variational principle which focuses

entirely on the reaction of the gas. In our case, these external interactions are electrostatic

forces and forces exerted by interfaces.

The central assumption of density-gradient theory is that the internal energy of the

conduction electron gas in a semiconductor is dependent on both the density and the

density-gradient, viz.,

(2.2) e = Ee(Pe, Pe.)

e
where pe. Given this, we can use (2.1) to determine the equations which govern the

system. Th-,, is accomplished by inserting (2.2) into (2.1) and, by a series ov"
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manipulations, putting the left-hand side of (2.1) into the form of a sum of integrals like

those appearing on the right-hand side of (2.1). The assertion that the variations 6y. and

D(byj) are independent and arbitrary then leads directly to the governing equations.

As a first step in this process, by changing variables from present to reference

coordinates and then back, we transform the left-hand side of (2.1) according to

(2.3a) 6P e fedV = 6fP e ee dV = fPegfedV0 = {Peg~e dV
V0  V0  V

where p and V0 are the density and volume, respectively, in reference coordinates.

Inserting (2.2) into (2.3a) we then have

(2.3b) 6IPe edV = Pe[Oeb + v#(;.e. dV

It is readily shown that

(2.3c) 6pe = _pe(6Yi)Ii,

and, using the relation, XL,i = -XL,( ) , that

(2.3d) b(pei) = -Pei(Y.) , - pe(yj), _ ejy),

and therefore (2.3b) may be re-expressed as
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(2.4) 4 fe edV =#~ -[[)2e P2 ]e (6y.).jdV + [4 P.(SYj),idV
p e i Pe J1

+ 7ekj(bj),,idV.

where i =- -'(p ) Le is identified in Sec. 3 as the "double-pressure" in the electron gas.
Vp

9Now, as pointed out by Green and Rivlin, the last integral in (2.4) could include an

arbitrary tensor M[kij j which is antisymmetric in its first two indices (as indicated by the

brackets) since M[k](y),ki=O. Such a term would have no consequences in the

variational principle - it does no work - and hence would not enter either the

differential equations or the boundary conditions which describe the system (although as

shown in Ref. 9 it can be important in formulating the latter). However, this term would

enter into the expression for the stress tensor (see Sec. 3). And because in the present work

the density-gradient effects arise microscopically from quantum mechanics, we will make a

particular selection of the Y{kiM which leads to the stress tensor being in agreement with

that obtainable from quantum mechanics. It is to be emphasized that this selection has

no macroscopic consequences and is made entirely on the basis of a microscopic argument.

The particular choice we make for the M[ki j is reflected in the integrand of the last
es e e w e

integral of (2.4). The expression 5ikj may be written as 1(i)j + where 7(ki) j
l e e5.]i e :1 e6  e
17~i 6, ssymmetric ontefirst two indices while ]is

antisymmetric. The latter quantity, irrelevant from a macroscopic standpoint as explained

above, is the particular antisymmetric tensor, i.e., with no additional M[kili, which we

select so as to obtain agreement with quantum mechanical results.

Next, using integration by parts and the divergence theorem, the integrals on the

right side of (2.4) can be transformed as follows,

7



e e
-;), [(e)7i ? e:i e 77.d

(2.5a) - (6Y d [(Pe)2d =Le

#ee j] , yjdV'

;rle ~ P 5kj)'j)kiV = 8rejiyd - !D n e] ydS-i ejj d

ee e

,j j ,i = tie26dS - YL1 e ]J1

(2.6) Pically ire dV =cn I(2.) dS - pres w . ledV ,

where n, is the outward normal vector to the surface S. Equation (2.6) can be further

transformed by a second integration by parts to obtain

~ji~j(c~r) d = jjYdV - IDi [nj77] byjdS - fni771i byjdS
S S

(2.7) + tnirce g n jD(j)dS + fDi Injeij] dS,
S S

where D. is the surface gradient operator defined by D. a -nD ermr htti

result depends on the order in which the two integrations of (2.6) and (2.7) have been

performed. However, it is readily shown that reversing the order of integration is

equivalent to including an additional term of the form Mpdijj in (2.4) and thus is

macroscopically irrelevant. Because (2.7) is the expression which leads to consistency with

quantum mechanics, had the reverse order of integration been used we would simply have

selected the tensor M differently (not e~kijj as above) so as to again obtain (2.7).

Finally, using the surface divergence theorem we can rewrite I Di [n1176yi dS as

S
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m injrejds, where mi is the unit vector binormal to the edges C. This combined with

C
(2.7) and (2.5) allow (2.4) to be fully transformed into a sum of integrals like those on the

right-hand side of (2.1). With some further algebra and the assumption that the

variations 6y. and D(6yj) are arbitrary and independent (which implies that each integrand

must vanish), we obtain the following equations:

(2.8a) F - e
)= L w + e e ),ij [ P1i

J-'-~ L p e -nP (')ji~ n

e e

O~P ,e e j j i

(2.8c) F4  r e

(2.8d) F4  [miTe = .n+mne

j [ili =2 j I [mI.

where the convention [A] = A+ - A- is used to signify the discontinuity in A across the

edge C whose binormal vector m i points from the minus side of the edge to the plus side.

The second equality in (2.8d) follows from the facts that min - mnni77 =

minke miemj r re (emki is the usual permutation symbol), that m i = eijksjnk (sj is the

unit vector tangent to the edge C) and that 77? does not depend on the normal vector n.

Lastly, in addition to (2.8b-d) we have another boundary condition which arises because

both byj and D(Syj) are continuous across interfaces. That both of these quantities are

continuous implies that (4y),j and, from (2.3c), that bpe/pe are also continuous. In order
for the latter to be true, we must thus impose the additional boundary condition
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(2.9) (pe, = Q

on all semiconductor boundary-value problems solved within density-gradient theory.

Equations (2.8) are the governing equations of the gas with (2.8a) being the

differential equation of equilibrium (force balance) and (2.8b-d) representing boundary and

edge conditions. However, for these equations to be practically useful it is necessary that

the physical meaning of the Fk be identified (e.g., F1 turns out to be the electrostatic
J91

force), a task not readily accomplished in the variational approach.' 1 2 These

identifications are much more apparent in the balance law approach discussed in Sec. 3.

One final point concerning the variational results relates to the derivation of Sec. 3

using the balance law approach of Green and Rivlin. As noted previously the latter

approach, while having a number of advantages, has the drawback that its starting point is

not readily known. The known relation ee = e(Pe pe i), which was an input to the

variational principle [(2.2)], is a consequence in the balance law approach if the starting

point is chosen properly. An added benefit of the variational approach is that it may be

used to determine this starting point. In particular, the balance law approach requires an

expression for the rate at which gradient effects ("double-tractions") do work on the

electron gas. For consistency with the variational principle, this expression must take the

form

(2.10) Tn17vidS
S

where v eis the velocity of the electro~l gas.
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3. Balance Law Derivation of Density-Gradient Theory

In obtaining macroscopic equations using the balance law appoach of Green and

Rivlin9 the underlying model of the system must be made more explicit than was necessary

for the variational principle. For this report, we model the semiconductor as two

interacting continua, one being an electron gas which flows with velocity v e inside the
1

other, a rigid solid (lattice). (For simplicity we omit the hole continuum which had been

included in Ref. 5). The charge density in the former is denoted pe while in the latter it is

pi and we allow no interchange of charge between the two continua through ionization or

recombination processes. Because the electron gas and the lattice are charged, they can

interact with one another through the electrostatic field E. In addition, we permit the gas

and solid to interact through a (resistive) drag force E which impedes the flow of the1

electron gas through the solid. Finally, the most important interactions for this work (as

seen in Sec. 2) concern how the electron gas interacts with itself. First, as in standard

diffusion-drift theory, 6 we permit neighboring elements of gas to interact across their

surface of separation through a gas pressure pe (or equivalently a stress tensor -pe6ij).

Secondly, we allow a more general interaction through a second-rank tensor called the

"double-traction" A. (also called a double-force5 ' 1 2 or a dipolar traction 9 ) in order that

the internal energy of the gas be density-gradient dependent. Actually, a gas which

interacts through a double-traction is energetically sensitive to the individual components

of the strain-gradient and, for our case, this is overly general. In particular, we would like

the dependence to be on the components of the strain-gradient, only in the specific

combination that is the density-gradient. To specialize the theory in this way, among

other things, it is necessary that an additional stress contribution be specified which is not

expressible as a pressure; therefore, in association with the double-traction ae., we permit

an additional surface traction t e in the analysis also. V.'e remark that the distinction
1
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between double-tractions and traction (or pressure or stress) is that tractions do work

when the gas moves over a distance whereas double-tractions do work when the gas itself

is strained.

The equations of electrostatics and the conservation laws of charge and linear

momentum as applied to the foregoing semiconductor model are readily formulated. In

integral form they are

(3.1a) TniDidS = !(pe+pi)dV,

(3.1b) I Ei dsi = 0

(3.1c) V./pedV + 0nivI dS 0
V S

(-ld jpea .iV=(np+iapnvjvi)dS +re(Ei+Ee~dV = 0.

S

where Di is electric displacement, ae is the charge to mass ratio of an electron, C is a

dosed contour and S is the surface of a fixed volume V. Because ae is constant' 7 the mass

balance equation for the electron gas contains no additional information beyond the charge

balance equation (3.1c) and can therefore be omitted. In addition to (3.1) and most

importantly for purposes of this report, we have thermodynamic equations, the first being

an expression for the conservation of energy in the system. For this equation, as noted at

the ezid of Sec. 2, it is necessary that we have an expres:iion not only for the rates at which

the pressure pe and the associated surface traction t . in the gas do work but also for the

rate of working of the double-traction The most general form for the latter is ae Ve
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However, as noted above, this general form leads to the internal energy of the gas

depending on the individual components of the strain-gradient tensor rather than simply

on the density-gradient and so needs to be restricted. As discussed in Sec. 2, how this is

accomplished is not very clear in the Green-Rivlin approach but variationally we were able

to argue that the correct form should be (2.10). Using a standard argument of Cauchy 7

which permits t to be writte as n.r e. where T. is the associated stress tensor in the gas,
e thei(o r diol

we can re-express 2 as nk?. j where nij is the "double-stress" (or dipolar stress9)

tensor. In terms of this tensor, the rate-of-working expression (2.10) is obtained if e is

specialized to

(3.2) 177dj -- jl77

As noted in Sec. 2, we term ie the "double-pressure". As in Sec. 2, an additional tensor

antisymmetric on its first two indices (M[ki]j) could, in general 9 ,12 be added to the above

however we exclude this in order that the stress tensor computed here agree with the

11corresponding quantum mechanical expression.

Employing (2.10) for the rate at which double-pressure does work on the

electron gas we may now write the energy conservation equation as

ap i iv + peEe)dV = (pe e n nee e e + 11

(3.3) 1 e e E J i+ i + njli7vi + le eee
VS

J(Pe ve dP.)d
nivepeee)dS + I(peEive + Ei )dV"

V

A. usual, away from interfaces the field variables are continuous and, by standard

argumentsT differential forms o (3.1) and (3.3) may be deduced. These are
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= e pi
(3.4a) Di Pe + p

(3.4b) Ei -"-,i

(3.4c) d + P eivi = 0,

(3.4d) eedev e e +e
)

[e e e e
11 1

(3.4) de edee re 7.p d e e 7 de , _

+ -3-p E i +• 4r

e -E7 d P eE.ve

In obtaining (3.4e) we have employed (3.4a)-(3.4d), the material derivatives,

(3.5a) d and d a e

and the fact that

(3.5b) Fdepl d . + v P

Now, in order that e depend only on the density-gradient as desired and not on the

individual components of the strain-gradient it is necessary that the coefficient of the term

involving ve in (3.4e) vanish. This can be achieved by selecting the associated stress

tensor re. to be .,

i1
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(3.5c) , = .r[, 7i]
ij - p elj

We note that if a term M[kil j had been included in (3.2) then all equations would be as

above except (3.5c) which would contain the additional term - M[ki]jk. As noted

previously, this additional term has been assumed zero because (3.5c) is in conformity with

11an expression derivable from quantum mechanics.

Equation (3.4e) is commonly called the first law of thermodynamics for the

macroscopic system under consideration. The form of this equation permits the second law

of thermodynamics to be written as 18

e ee

(3.6) Tt-+ P edee eP + 4]4e +Z.Lt e~)EP ~

where T is the temperature and n7 is the entropy per unit volume. Combining (3.4e) and

(3.6) we then have, for a uniform temperature state, the rate of entropy production

inequality
18

(3.7) t +p eEle1e,

Equations (3.4), (3.6) and (3.7) are the differential equations which comprise the

general, two-constituent, density-gradient description of a semiconductor. Being 10

equations in 22 unknowns this system is, as is usual for such equations, underdetermined

and additional equations must be supplied. The 12 auxiliary equations are the so-called

constitutive theory which specifies the material properties of the particular system under

consideration. Their functional forms may be deduced from the requirements imposed by
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the need to satisfy (3.6) and (3.7). The equations deriving from (3.6) are the recoverable

or non-dissipative constitutive equations while those from (3.7) are dissipative. Here we

focus on the former.

The form of (3.6) shows that e and, most importantly for this report, ee have the

desired functional forms, i.e.,

(3.8a) C= (Pi) ,

(3.8b) e= e(Pe'Pe.)
,1

where the temperature (entropy) dependences have been left implicit. To obtain the

recoverable constitutive equations we insert (3.8) into (3.6) and carry out the

time-derivatives of f and fe Then, from the fact that the time derivatives of pe, Pie. P.

and 77 are independent and can hold arbitrary values, it must be that their respective

coefficients vanish. This results in a set of equations, the recoverable constitutive

equations, which may be written

(3.9a) P. = Pi(E.) or Di = Di(Ej) ,

e e e
pe eafe 7ieP e

(3.9b) p e= e e i

P /e -pe e  ,

ee
(3.9c) pi - ea iE

where we note that (3.9c) is in accord with the definition for 7ie used in Sec. 2. As noted
1
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above, the dissipative constitutive theory arises from (3.8) and, as discussed in Ref. 18,

would give rise to a functional relationship for E. This equation together with (3.8) and
1

(3.9) are the 12 constitutive equations which make the differential system fully

determinate.

The final component of the theory, necessary for formulating boundary value problems,

is a set of consistent boundary conditions. In the balance law approach, these are obtained

by taking appropriate limits of the integral forms of the governing equations. For

example, by applying (3.1a) and (3.1c) to an arbitrary pillbox region encompassing a

portion of the interface and taking the limit as the volume collapses to the interface in the

usual way, we obtain

(3.11a) ni[Di =)

(3.uib) e 8

(1 + ni.peve = nipeve + a-i] = 0.

limr i,,

where a = V. 0 p dv is the usual surface charge density at the interface. In a similar way,

V
by taking an arbitrary closed contour which intersects the interface and taking the limit as

it collapses to the interface, from (3.1b) we have

(3.11c) ki = 0.

And, applying the same process to (3.1d) as was applied to (3.1a,b) and assuming that pe

remains bounded in the limit (in accord vith the above definition of o-) we obtain
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(3.11d) Fj = ni- p e6 i jiaepevev

eee:n - e ).  oee+ ]+pej ni [-epevev _ Pe [7] t

where (3.5c), (3.9b) and (3.9c) have been used to obtain the second equality and Fe -
lim eeJ
V-4 0 1P e. dV is the force exerted by the interface on the electron gas. If this force is

V
important, e.g., in the case of an insulating boundary, a surface thermodynamics like that

of Ref. 18 would have to be developed and from it a constitutive equation for Fe deduced.

We note that (3.11d), when written in equilibrium form (with ve=O), differs from the

equilibrium condition (2.8b) derived from the variational principle [apart from differences

associated with (2.8d) being a traction condition while (3.11d) is a continuity or interface

condition] in that (2.8d) contains the added term Di(nji4). Below this difference is

resolved, however, first we obtain several conditions arising from the introduction of

density-gradient dependence and, consequently, double-traction A-. into the theory.
ij

The first double-traction condition results from an assumption that the normal

eecomponent of the double-traction, n.i 9 , is continuous across interfaces. Rewriting this in

terms of double-pressure i we have the boundary condition

(3.12) 0 = [niaj = [ninjnTe1

This is of the same form as the corresponding variational condition (2.8c) and implies that

the normal component of i is continuous. Because the starting point of the balance law

aplroach, (3.2), did not contain an additional arbitraryr tensor M[ki]j [in order to obtain

(3 5c)], it cannot also be true in general that the tar.bential component of 7e is continuous.

Thus, we assume
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(3.13a) ri =77eI

where i is a vector tangent to the surface. We note that this condition is not needed for

solving boundary value problems (no similar condition arose in the variational approach)

and Fi may be computed using (3.13a) following the solution of a particular boundary value

problem. The computed vector Fi represents the reaction of the interface to a tangential

double-pressure exerted on it by the electron gas. We further note that, away from edges

C, the surface gradient of (3.13a) may be formed [first multiplying (3.13a) by nj] to obtain

eJ
(3.13b) Di(nji ) = [Di(nj7e)!

The last double-tri.ction condition in the the theory is across edges C. We demand that

the vector miej be continuous and thus have the edge condition

(3.14) 0 = [minjieI = tminjqi + mjn inieI

where the second equality is reached using the same argument employed in (2.8d).

Condition (3.14) is identical in form to (2.8d). Finally, density-gradient theory has the

additional condition obtained from the variational principle in (2.9) that demands that the

electron gas density be continuous across interfaces. There is no explicit justification for

this condition in the balance law approach; it is simply a kinematic condition.

In summary, the density-gradient description of a semiconductor consists of the

differential equations, (3.4), the constitutive equations, (3.8) and (3.9) plus equations for

Ee and F e and the consistent boundary and edge conditions, (2.9), (3.1la-d), (3.12) and
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(3.14).

With the foregoing balance law development in hand, following Refs. 9 and 12, we can

now return to the variational approach and identify expressions for, and thus the physical

origins of, the unknown generalized forces F . in (2.8a-d). In particular, comparing

(2.8a-d) with the equilibrium forms of (3.4d), (3.11d) with (3.13b), (3.12) and (3.14) we

obtain

(3.15a) F1 = peEj

(3.15b) F2 = Fe -
J J (nji

(3.15c) F3 = 0J

(3.15d) F 4 = 0.J

We remark that it is the existence of the tangential interface double-pressure ri and the

condition (3.13b) which lead to agreement between (2.8b) and (3.11d).

As a final task for this Section we obtain a more useful form of the density-gradient

theory, which had been exhibited also in Ref. 5 and which puts the equations in a form

much like that of the standard semiconductor equations (diffusion-drift theory). This form

is reached by transforming the equations so that they are expressed in terms of a

(generalized) chemical potential rather than the gas pressure, stress and double-pressure as

above. Such a transformation simplifies the mathematics considerabl) and, as with the

standard theory, provides a physical underpinning for and extends thLe use of so-called

"energy diagrams" frequently used in the qualitative discussion of semiconductor devices to
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situations in which quantum effects are important. To use other terminology, it defines the

conditions under which a quasi-Fermi level description may be used or, equivalently,

shows when a diffusion-drift type description is appropriate. Unfortunately, the chemical

potential transformation in either the standard theory or the density-gradient theory is

impossible when inertia is non-negligible (and possibly also in the presence of material

inhomogeneity), which is often the case when density-gradient (quantum) effects are

important. Thus, strictly speaking, when inertial effects are significant it is necessary to

deal with the pressure equations directly. Nonetheless, because of the great usefulness of

the chemical potential equations, we develop such equations below. These equations will

be exact when inertia is negligible and a reasonable approximation for most cases when it is

not.

The chemical potential transformation, of course, affects only the equations expressing

momentum balance: (3.1d), (3.4d) and (3.11d). For density-gradient theory, this

transformation hinges apon the fact that, assuming material homogeneity, from (3.8b) and

(3.5c) it is readily shown that

el
(3.16) +  e = Pe + i

[ ape P,i ,j

And, consequently, if we define a generalized chemical potential as

e
(3.17) ,,e* e

pf" ,i

where Oe (pe e ) is the usual chemical potential, then using (3.16), (3.4d) may beape

re-written as
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edev~
e  e

(3.18) - d + -

This equation is particularly simple when inertia is negligible (ae--0 ). Now, to obtain

consistent boundary conditions we of course need an integral form of (3.18). We postulate

the following:

(3.19) of i ve7 dV - nveveds - ae{V(v - v )dV ni(+e)ds + E edV

The difficulty in obtaining boundary conditions from this expression is evident. The third

term on the left-side may be infinite in the limit as the pillbox collapses about the

interface. It is only in one-dimension, for which this term is zero, that there are no such

difficulties. In two or three dimensions the requirement for this term being zero is that the

flow be irrotational, a condition which is not in general true. Because of the great

usefulness of the chemical potential formulation we assert, however, that in the majority of

cases, either one-dimensional or irrotational flows are approximated and that therefore the

contribution of this term to the boundary condition is negligible. Granting this assertion,

(3.19) then leads to the chemical potential boundary condition

(320) eveve e*

where nife dS= lim EedV and fe is the force per charge exerted by the interface on

S
the electron gas. As with Fe , a functional form for may be obtained by setting up a

surface th rmodynamics.18
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4. Partial Specification of the Constitutive Theory

In order to make the theory developed in Secs. 2 and 3 concrete, in this Section we

present a set of simple constitutive equations which appear to lead to a useful theory.1 3- 15

We here discuss only the bulk constitutive equations. The primary equation, of course, is

the equation of state of the electron gas; that is, we need to select a particular expression

for (2.2). We construct this expression for ee from two terms, a purely density dependent

term eg(pe) and a term involving both the density and the density-gradient e(pe,pei) with

the latter term vanishing when the density-gradient is zero. The first term must obviously

be of the form used in standard diffusion-drift theory. For low densities, this form is that

e eof ideal gas, i.e., with p linearly proportional to pe. Selecting

ee =E c _k
(4.1) a(-) - kTfln(-pe/qNc) - 1]

0 q q

and using (3.9b) we have, as desired,

(4.2a) pe kT e

and

(4.2b) e _ c -kTln
q q n(_.pe /qN)

For the density-gradient dependent term we again would like the lowest order form. Just

like with the density term, this is obtained when the double-pressure 77i is linearly
e eproportional to the density-gradient pe.* The appropriate form for e is
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e e
(.3) e(pee) b ipe i

Inserting (4.3) into (3.9c) then yields the linear relationship

(4.4a) i= bp

and

e pee

The coefficient b in (4.3) and (4.4) is a macroscopic material coefficient which characterizes

the strength of the density-gradient effect in the electron gas. In ReL 11, a microscopic

formula for b was obtained (subject to specific microscopic assumptions) of the form b =

h2/(48r 2m*q) where m* is the effective mass, h is Planck's constant and q is the charge on

an electron. Of course, in a macroscopic framework such a coefficient should be

experimentally determined.

e

In addition to the constitutive specification for , to fully determine the differential

equations we require also equations for the electric displacement Di [(3.9a)] and for the

drag force Ee. For both we take the simplest form of a linear proportionality:

(4.5) Di = esE i

and
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e

(4.6) Ee e

where, as usual, es is the electric permittivity of the semiconductor and Ae is the electron

mobility. With assumptions (4.1), (4.3), (4.5) and (4.6) the differential equations are fully

specified. All of these equations are familiar except for that expressing momentum balance

which is the same (except in the case of material inhomogeneity) in either the pressure

(3.4d) or chemical potential formulation (3.14). Written in a diffusion-drift-like form, the

momentum balance equation is

(4.7) 1 e_ e e e DePe + 2ePbee
i vi - i i i

where J e is-the electron current density, De ; kTA e/q (k is Boltzmann's constant) is thei

electron gas diffusion constant and, for compactness, we use the variable s defined by s

- . The first two terms on the right side are the usual drift and diffusion expressions of

the standard transport theory and the third term represents the correction arising from

density-gradient (quantum) effects. Consequently, (4.7) may be referred to as a

generalized diffusion-drift current equation and the third term, since it arises from the

gradient of the generalized chemical potential (3.13), may be called "quantum diffusion."

Equation (4.7) has been demonstrated to be in very good agreement with experiments and

with microscopic theory in both static 13 and steady-state 13 )1 5 applications.
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